# Are you smarter than a 4th grader?

Posted on: November 6, 2010

I recently ran across an article that Donald G. Saari (author of Basic Geometry of Voting) wrote in 1996 about that year’s elections, highlighting the ease with which an unwanted outcome can occur. As he explains, when an election result is not what one thinks it should be, that is, the preferred candidate or issue does not win, it is called a voting paradox. This is generally not due to the voters, but rather the voting procedure used. In plurality voting, the process we use in which each voter votes for one candidate and the candidate with the most votes wins, multiple candidates can “split the vote” causing an “inferior” (at least according to the will of the people) candidate to be elected.

Saari demonstrates his point with a very entertaining story about his encounter with a group of precocious 4th graders in 1991. He was attempting to present a counting problem caused by a hypothetical voting example, when the students recognized a flaw in his assessment of the winner in a three-way vote. According to plurality voting, candidate A was preferred to B who was preferred to C in a 6:5:4 vote, when considering only the first choice of each voter. But the students immediately protested, because he did not factor in the “next best” preference, which alters the outcome. In fact, when all rankings were considered, not just the top-ranked candidate, the winner A under plurality voting was actually the least preferred by the majority of the voters, and C was in fact the favorite.

When he asked the students what they thought was the “correct” voting procedure to use, one of the students suggested voters assign 3 points to their favorite candidate, 2 points to the next best, and 1 point to their least desirable candidate. What this student described is the Borda Count method, named for the French mathematician JC Borda, who developed this method in 1770. When the Borda Count method was applied to the voting example, it showed that C was preferred to B who was preferred to A by a 34:29:27 vote – consistent with the students’ earlier assessment. Then Saari presented a version of Marquis de Condorcet’s puzzling example from the 1780’s that shows it is possible to have no winner, because there is a way to count the votes so that every candidate has the same number of votes. The students saw right through this example, as well.

The amazing thing about these students is how quickly they recognized a flaw and were able to suggest reasonable solutions, based solely on their examination of the problem. As Saari points out, they have not yet been conditioned to blindly accept the way things are, but rather used critical thinking skills coupled with their value of fair play. He is concerned that too often our educational system stifles the creativity of our students rather than nurture their inventiveness and innate desire to explore the world around them. He suggests that educators consider changing their classroom approach in order to foster creativity and develop problem-solving skills in their students. As these 4th graders demonstrate, children can accomplish amazing things when given the right environment.

### 1 Response to "Are you smarter than a 4th grader?"

The concept that the fourth graders came up with sounds good for some elections but not all. When voting for the 2010 Seatac League Baseball first team and second team all-stars with the coaches in the league, we came up with a problem while using this method. There were 22 athletes who were in the running for 18 open slots. The coaches were suppose to vote for nine players in order of one through nine. The player ranked first would receive nine points, second would receive eight points, etc. The coaches thought that Player A would automatically be one of the 18 players so we all didn’t vote for that player. When all the votes were in Player A wasn’t elected yet players who shouldn’t have been elected were. All the coaches ranked who they thought weren’t going to make it at the top. We eventually revoted using a different system, but the ranked system doesn’t always work, because we don’t vote on who we want to win but instead who we don’t want to win.

• None
• gramsonjanessa: I can't wait to listen to your capstone presentation in the spring! Your proposal was really interesting and I'm interested to see how the linear alge
• dewittda: This is impressive! I thought I was good because I solved a rubik’s cube once in an hour. I served with a guy in the Air Force who could solve a r
• ZeroSum Ruler: The Euclidean algorithm should me the mainstream way we teach students how to find the GCF. Why isn't it? A mystery.